

2023 Course Catalog

Training Designed with Production in Mind

v.1

About the Academy of Industry and Manufacturing

AIM is a woman-owned and operated school supporting Michigan manufacturers and workers pursuing high-demand skills related to robotics, controls, automation, and industrial maintenance. At AIM, we offer targeted, hands-on training to workers while keeping production at the forefront.

Our approach to training eliminates waste and equips workers with the precise skills needed to help manufacturers meet their production goals.

This highly customizable catalog of classes combined with our hyper-flexibility ensures the right skills are delivered to the right people, at the right time, on location or at our high-tech training facility in Sterling Heights, MI.

We don't waste time with lengthy lectures and PowerPoint presentations. Our training is 80% hands-on using our custom training equipment. We keep classes smaller to give learners the individual attention they need so they return to work confident, competent, and ready to apply what they've learned.

We thoroughly vet all instructors to ensure you are provided with field-tested and experienced professionals that know what your workers need. Our instructors will work with you side-by-side in the field so they can stay sharp while taking time to understand your specific needs.

About This Catalog

- All courses within this catalog represent our standard course content and length. Each can be customized to meet the specific needs of any business or educational institution.
- The courses included in this catalog can be combined to create complete programs or short workshops for building workforce "bootcamps" or for training new employees. (Examples on Page 17)
- This catalog is not representative of all our offerings. Please contact us with special training requests and courses not represented within this catalog. (Contact info below)
- Equipment for most courses within this catalog can be provided upon request and may require additional cost.

CONTACT INFORMATION

9 5680 18 Mile Rd. Sterling Heights, MI 48314

\$ (586) 371- 0448

⊠ Heidi@aimtradeschool.com

💌 www.aimtradeschool.com

Contents Page Manufacturing Essentials 2 Workplace Safety 2 Industrial Automation 4 Electrical & Electronics 5 Robot Programming 9 Robot Mechanical 11 Machining 11 12 Quality Manufacturing Production 14 Mechanical 15 HVAC 16 Example Programs 18

Manufacturing Essentials

J
This course is designed to provide an understanding of mathematics used in
shop work. Course topics include decimals, fractions, tolerances,
English/metric conversions, trigonometric functions, and basic algebra, as
well as use of scientific calculators.
This course will provide students the basic skills needed for understanding
the language of technical drawings or blueprints. Through lecture and hands
on exercises, participants will learn about drawing areas, the alphabet of
lines, Orthographic Projection on multiple view drawings, additional drawing
views including section, auxiliary and detail views as well as dimensions and
tolerances, and thread callouts.
This course will provide students with a fundamental understanding of
Geometric Dimensioning and Tolerancing (GD&T). Students will learn GD&T
symbols and rules, identify form, orientation, location, runout, and profile
controls, and understand material condition. Students will also define
datums and interpret a feature control frame to understand what is being
controlled and to what extent. Emphasis is placed on the communication
that GD&T provides.
·
This course will provide students with basic skills and an understanding of
the science of measurement critical at each stage of manufacturing from
design to the finished product. The course will cover scales, height gages,
micrometers, and calipers, in addition to an introduction to gage blocks,
go/no-go gages and the principles of coordinate measuring machine
operation.

Workplace Safety

OSHA 10	This course covers basic industrial safety. It is designed to provide the
Length: 16 Hours	trainees with an understanding of OSHA, its history, how to find and read
Prerequisites: None	OSHA standards, and understanding your rights as a worker. Topics include
Length: 30 Hours	an Introduction to OSHA, Walking and Working Surfaces, Fire Safety,
Prerequisites: None	Electrical Safety, Personal Protective Equipment (PPE), and Hazard
	Communications. Other topics may include such things as Machine
	Guarding, Confined Space Safety, Forklift Safety, Lockout/Tagout, or other
	topics relevant to the client's needs. Upon successful completion of this
	training course, participants will receive an OSHA 10 course completion
	card.

OSHA 30	This course expands on the 10-hour General Industry training and covers the
Length: 30 Hours	required topics necessary to obtain the OSHA thirty-hour General Industry
Prerequisites: None	course completion card. The course is comprised of 25 sections and covers
	topics pertaining to regulations covered by OSHA standards in 29 CFR 1910.
	Topics covered include topics in the OSHA 10-hour training along with
	additional topics such as Hazardous Materials, Bloodborne Pathogens,
	Welding, Cutting and Brazing Safety, Industrial Hygiene, Safety and Health
	Programs or other topics relevant to the client's needs.

Confined Space	This course is designed to help students understand, recognize, and prevent
Length: 8 Hours	health hazards associated with confined space entry. The course provides an
Prerequisites: None	understanding and recognition of confined space hazards, instrumentations
	used to evaluate atmospheric hazards, ventilation techniques, entry permits,
	isolating the space, working in the space, and evacuating the space.

Confined Space -	This course covers OSHA's standard for confined spaces (29 CFR
Entry/Attendant/Supervisor	1910.146). This standard contains the requirements for practices and
Length: 24 Hours	procedures to protect employees in general industry from the hazards
Prerequisites: None	of entering permit spaces. Confined Space
	Entry/Attendant/Supervisor level training instructs students about the
	hazards of limited or restricted means of entry or exit.

Lockout/Tagout	This course is designed to provide students an understanding of the OSHA
Length: 8 Hours	Lockout/Tagout standard 1910.147. Through lecture and hands on
Prerequisites: None	exercises, the learners will understand the importance of LOTO in allowing
	them to work safely with equipment where unexpected start-up or
	movement could create a hazard. Using hands-on exercises and case
	studies, the trainees will understand the OSHA Lockout/Tagout regulation
	1910.147 principles, when LOTO is required, and the proper steps to
	perform an effective lockout on a piece of equipment.

Basic Safety - Electrical	This course is a safety course for participants who are new to electrical or have little knowledge of electrical circuits and the hazards of electricity.
Length: 16 Hours	Topics investigated are: What is electricity? Conductors, Insulators &
Prerequisites: None	Semiconductors. Safety-related workplace practices. What causes an electrical arc? What is flashover? Personal Protective Equipment & Arc Flash related topics.

Industrial Automation

PLC & Communication Devices	This course is designed to provide participants with PLC fundamentals. The course provides an understanding of PLC circuits, hardware, and applications. Course topics include PLC instructions, hardware,
Length: 80 hours	communication devices, and troubleshooting navigation of PLC controller
Prerequisites: None	software and components. Upon completion of this module the trainees will be able to demonstrate knowledge of the operation and programming of PLC's also demonstrate knowledge of the installation and troubleshooting of PLC's and communication devices.

Allen-Bradley Basic	This course provides learners with the fundamentals needed to create,
PLC	transfer, test and verify working RSLogix projects. Participants will learn
Length: 40 Hours	ladder logic, using tags and datatypes and will go online with controllers to
Prerequisites: None	edit ladder routines online and offline.

Allen-Bradley	This course is designed to allow participants to program, test and verify
Intermediate PLC 1	a wide range of PLC programs. The course provides learners with the
Length: 40 Hours	ability to monitor, edit, and create programs and routines online and
Prerequisites: AB Basic PLC	offline using RSLogix projects.
(or equivalent experience)	

Allen-Bradley	This course is designed to allow participants to build, test and verify a PLC
Intermediate PLC 2	program given the I/O table, sequence of operation, location of
Length: 40 Hours	components and an understanding of station tasks. This course
Prerequisites: AB	will challenge participants to write and design solutions to given problems.
Intermediate PLC1 (or	
equivalent experience)	

Allen-Bradley PLC	This course is designed to train the participant how to work with
Troubleshooting	inoperable stations, identify problems, and troubleshoot solutions on
Length: 40 Hours	Rockwell RSLogix PLC programmed systems. Participants learn to use
Prerequisites: AB	troubleshooting tools, fault codes, alarm messages, and the fault
Intermediate PLC2 (or	indicators to determine and correct the problem.
equivalent experience)	

Siemens Simatic S7	This course provides participants the ability to program using STEP7,
PLC Programming	program structures, system functions, and custom block design. STEP7
Length: 40 Hours	engineering tools and programming instructions guide the student through
Prerequisites: None	realistic applications.

Omron PLC 1	This course provides an understanding of Omron PLC circuits, hardware, and
Length: 40 Hours	applications. Omron PLC 1 is appropriate for students with little PLC
Prerequisites: None	knowledge. It teaches PLC basics and participants begin to write programs.

Omron PLC 2 is a more advanced class for students with PLC experience or
who have been through the Level 1 class. This course covers more advanced
PLC instructions and troubleshooting navigation of PLC controllers' software
and components.

HMI Programming	This course is designed to provide the skills in HMI fundamentals. The
Length: 40 Hours	course provides an understanding of HMI functions hardware and
Prerequisites: None	applications. Course topics include PLC to HMI instructions, hardware, HMI
	graphics, and creating troubleshooting messages displayed on HMI.

RFID for	This course is designed to teach the student the installation, programming,
Manufacturing	and operation of Radio Frequency identification Systems (RFID) used in
Length: 24 Hours	manufacturing plants.
Prerequisites: None	

Automated Systems Troubleshooting -	This course covers system level training and integration
Capstone	fundamentals. Course topics include electrical schematics
Length: 40	combined with integrated PLC, mechanical systems, fluid
Prerequisites: Advanced PLC, Electrical	power systems and welding systems.
Fundamentals, Robot Operation &	
Programming (or equivalent experience)	

Fluid Power	This course provides students with an understanding of fluid power
(Pneumatic/Hydraulic)	symbols, laws, equipment, formulas for fluid power calculations and
Length: 40 Hours	maintenance procedures for fluid power systems. Students learn to read
Prerequisites: None	schematics, interpret pneumatic symbols, and get hands-on with pumps,
	control valves, actuators and other fluid power components while using a
	bill of materials to build, test and troubleshoot multiple fluid power
	systems.

Electrical & Electronics

Electrical	This course covers the basics of DC (direct current) and AC (alternating
Fundamentals	current) theory and fundamentals. Course topics include concepts of
Length: 40 Hours	electrical schematics, components, voltage, current and resistance. Ohms
Prerequisites: Shop	Law is used extensively to verify the results obtained from the outcomes of
Math (or equivalent	the lab experiments. Power supplies and test equipment like the digital volt
experience)	Ohm meter will be operated to make observations of circuit parameters and
	operation.

Electrical	This course emphasizes electrical concepts for individuals having little to no
Fundamentals [No	knowledge of electrical circuits. Students take the following measurements
Math]	using a digital voltmeter: Alternating & Direct Current voltages., Alternating
Length: 24 Hours	and Direct Current Amperages, checking diodes, checking continuity,
Prerequisites: None	measure resistance, using AC & DC power sources individuals will construct
	electrical circuits from AC & DC wiring diagrams.

Motor Control & Drives	This course is designed to provide basic skills in motor control operations.
Length: 40 Hours	Participants will build and learn how relay logic circuits operate in motor
Prerequisites: Electrical	control circuits. Participants will operate and gain an understanding of AC /
Fundamentals (or	DC motor operations, control circuit components, Star and Delta
equivalent experience)	configured motors, ladder diagrams, and interpretation of electronic
	motor control schematics. VFD operation, wiring, and programming is
	imbedded into course content.

Digital Electronics	This course covers the fundamentals of digital electronics and
Length: 40 Hours	troubleshooting digital circuits. Course topics include logic gates, Boolean
Prerequisites: Electrical	expressions, and schematics for logic gates, inverters, digital electronic
Fundamentals (or	circuits and troubleshooting analysis.
equivalent experience)	

Electronic Sensors	This course introduces participants to the most common types of sensors
Length: 24 Hours	and boundary ranges of sensors. Participants learn adjusting and
Prerequisites: Electrical	alignment, sinking and sourcing along with NPN and PNP types of sensors.
Fundamentals (or	Labs include application of terminology, schematic symbols, and methods
equivalent experience)	of bench testing a wide range of sensors.

Electrical Print Reading	This class is designed around an individual that has some knowledge of
Length: 24 Hours	electrical concepts and use of a DVM (digital voltmeter), also some
Prerequisites: Familiarity	identification with basic electrical components. Schematic symbols will be
of electrical components	introduced as they appear on actual wiring diagrams. Pictures as well as
(or equivalent	illustrations of typical control devices will be introduced along with
experience)	associated equipment. The student will operate a DC Power Supply, &
	build relay logic circuits of various common control circuits. Some of
	these circuits include start stop, limits, control, safety and holding.

Electrical Maintenance	This class is designed for current or new maintenance personnel that have
Length: 24 Hours	some familiarity of electrical circuits and wiring. Some of the topics include,
Prerequisites: Some	NEMA, identifying electrical components from their symbols, measuring
familiarity of meter	resistance, checking cables using a continuity function of a DVM, series –
usage, and electrical	parallel – combinational circuit wiring, remote operations of servo motors,
circuits	and proximity sensor testing along with replacement and alignment.

Variable Frequency Drive Training [VFD] Length: 16 Hours Prerequisites: Familiarity of basic wiring standards and meter usage	This course is for individuals having little to no experience of VFD operations. Participants will learn VFD systems and associated components, wiring, fusing, and programming. Topics include the warnings associated with VFD's, navigating the operator keypad functions, input and output voltage connections, field wiring done by technicians, parameter summary & descriptions, & default values. Some of the programming involves the following adaptions. Motor voltage, motor base frequency's, base RPM's, acceleration time, deceleration times, skip frequency bands, resetting parameters to default values & Coast-to-Stop deceleration. [Often paired with "All About Motors" Class]
All About Motors	In this class participants will learn about the most common types of motors
Length: 8 Hours Prerequisites: Familiarity of basic motor wiring and use of a DVM	used in industry. The motors that will be studied will be single phase and three phase type. Single phase motors will be connected to operate in 120 volt and 240-volt configurations and reversed. Different three phase motors will be configured for 240-volt (Delta) and 480-volt (Star) operation. Test equipment will be introduced to measure voltages, currents, winding
	resistances, & phase checking.
IPC J-STD 001 Theory Test Prep Class Length: 32 Hours Prerequisites: None	This course is designed to provide students the knowledge of the Soldered Electrical and Electronic Assembly standards. This course explores materials, methods, and verification criteria for producing high quality soldered interconnections. This standard emphasizes process control and sets industry consensus requirements for a broad range of electronic products. This is a comprehensive, knowledge-based series of modules which introduce students to the methods and procedures presented in the JSD -001 document. Students will be guided by the instructor in locating answers to questions associated with the open and closed book certification tests. It is designed for those new to the electronics industry. The class is 100% classroom lecture. Individuals who complete the class successfully will have the skills to pass the two tests, (open & closed book) needed to obtain a J – STD001 (CIS) "Certified IPC Specialist" certification.
IPC Soldering J-STD 001 Prep Class	This class introduces the student to hand soldering techniques and soldering knowledge. It is designed for those new to the electronics
Length: 16 Hours Prerequisites: Prior experience with hand soldering	industry. The class is 90% hands on skills development. Students will demonstrate soldering skills using lead/lead free solder as used in manufacturing. Individuals who complete the class successfully will have the skills to accurately solder, assemble and inspect electronic components, & printed circuit boards. IPC guidelines are imbedded within class activities that include requirements for acceptable interconnections of electronic components, printed circuit boards, and sub-assemblies. During the class the student will solder on an actual IPC practice board, and as a final solder on a certification board just as in the J-STD-001 Certification Class.

IPC Soldering Boot Camp Length: 24 Hours Prerequisites: None	This class introduces the student to hand soldering techniques and soldering knowledge. It is designed for those new to the electronics industry. The class is 25% classroom lecture and 75% hands on skills development. Students will demonstrate soldering skills using lead/lead free solder as used in manufacturing circuit boards. Individuals who complete the class successfully will have the skills to accurately solder, assemble and inspect electronic components, printed circuit boards, cables and harnesses, and sub-assemblies. IPC guidelines are imbedded within class activities that include requirements for acceptable interconnections of electronic components, printed circuit boards, and sub-assemblies.
IPC J-STD-001 Training–Operator Length: 40 Hours Prerequisites: None	This course is designed to teach students the requirements for Soldered Electrical and Electronic Assemblies standards. The course covers the materials, methods, and verification criteria for producing high quality soldered interconnections. The standard emphasizes process control and sets industry consensus requirements for a broad range of electronic products. IPC's J-STD-001 Operator Proficiency Series is a comprehensive, knowledge-based series of modules that certify students to the methods and procedures presented in the J-STD-001 document. Designed for operators, the program assists workers with interpreting the J-STD-001 specification through lecture, demonstration, and labs.
Wire Harness Design, Manufacture & Troubleshooting Length: 24 Hours Prerequisites: None	This class is designed for a broad range of electrical manufactures and their products. The class begins with wiring harness diagrams and associated symbols. Pin board assembly techniques are discussed in detail with the importance of mass-producing wire harnesses. IPC wiring standards for wiring harnesses [WHMA-620] is discussed as a reference to industry standards. Soldering basics are practiced & PPE is discussed and practiced along with lead/lead-free solder guidelines. Labs are imbedded into the course to include, terminal lug soldering and sanctioned IPC splices. Cable harness abnormalities along with wiring harness assembly processes are discussed along with quality control. Participants construct an actual working cable harness and test it with a continuity checker before applying power to the cable.
Panel Build Technician Length: 32 Hours Prerequisites: Experience with basic wiring, hand tools and DVM meter usage	In this class, students learn the correct procedures for building a panel using safe and approved methods. Participants use drawings and wiring diagrams to assemble the panels, check for defaults during the build period, and learn how to take suitable action to remedy defects. Students use several approved methods of diagnosing faults demonstrating the correct use of test equipment.

Understanding Ladder Diagrams	Every piece of equipment (no matter how simple or complex) will have a wiring diagram. Understanding how the components of a circuit are
Length: 32 Hours	connected requires skill in reading circuit schematic diagrams, sometimes
Prerequisites:	called ladder diagrams. In this class students will wire up 25 to 30 common
Experience with basic	relay logic circuits and prove their operation. They will also troubleshoot
wiring and DVM usage	circuit faults the instructor has put into a wired circuit. The wiring the
	students learn in this class will help them in understanding PLC field
	troubleshooting and wiring. Students also practice field upgrades (adding a
	new function to circuit operation) on some circuits.

Robot Programming

FANUC Robot	This course is designed to provide the basic skills needed to operate and
Operations &	program Fanuc Robots. Course topics include Robot Safety, Setup, Teach
Programming	Pendant Controls and Programming. Upon completion of this course the
Length: 40 Hours	trainees will have the knowledge and skills to safely program and operate an
Prerequisites: None	industrial robot.
FANUC Robot	This course is designed to provide the advanced skills for operating and
Advanced Operations	programming Fanuc Robots. Course topics include collision guard, condition
& Programming	monitor function, multi-tasking, program shift utility and systems
Length: 40 Hours	operations. The course provides both classroom and hands-on training in the
Prerequisites: Robot	use of advanced controls, operations, and part programming.
Operations &	
Programming (or	
equivalent	
experience)	

FANUC Robot	This course is designed to provide an understanding of the Fanuc controller,
Electrical Maintenance	its main components and to diagnose and repair the robotic electrical
& Troubleshooting	system. The instructor will insert faults into the controller and/or robot, and
Length: 40 Hours	have the students find and repair the faults.
Prerequisites: Robot	
Operations &	
Programming (or	
equivalent experience)	

FANUC iRVision 2D	This course is designed to provide the basic tasks and procedures required
Length: 24 Hours	to set up, teach, test, and modify iRVision applications on an R-30iA Robot
Prerequisites: Robot	Controller. The trainee will understand general vision concepts including
Operations &	camera setup, lighting, lensing, 2D Single and 2D Multiple View Process
Programming (or	and perform hands on programming with industrial vison systems.
equivalent experience)	

FANUC PaintTool	This course teaches tasks and procedures that an operator, technician,
Programming &	engineer, or programmer needs to set up and program a FANUC robot using
Operations	the FANUC Robotics PaintTool Application software package. The course
Length: 40 Hours	consists of lectures, demonstrations, and a series of lab exercises designed
Prerequisites: None	to reinforce student learning. Recommended safety procedures are
	integrated into all training exercises.

FANUC ROBOGUIDE	This course is designed to provide the skills needed for creating a computer
HandlingPro	3D simulated robotic workcell using FANUC ROBOGUIDE. This course is
Length: 24 Hours	designed for application engineers who need to design robot workcells,
Prerequisites: None	perform cycle time, reach ability studies, or generate robot paths. This
	course will provide procedures for creating a HandlingPro virtual workcell.
	When completed, the workcell created will contain a FANUC robot with end-
	of-arm tooling, one or more fixtures for holding a part and a robot TPP
	Program which moves the part from one fixture to the next.

FANUC Dispense Robot	This course is designed to provide the students with a
Length: 40 Hours	basic understanding of the operation, programming and maintenance
Prerequisites: Robot	of the robot dispense controller along with proper sealant applications
Operations & Programming	and sealant properties. Through lecture and hands on exercises,
(or equivalent experience)	students will gain an understanding of how dispense systems work and
	the advantages they provide.

ABB Robot Operations	This course provides participants with the ability to program and operate an
& Programming	ABB robot. The course is a combination of lecture and hands-on training
Length: 40 Hours	and is custom-tailored to a specific software, controller, and robot.
Prerequisites: None	Identification of the software and controller is needed prior to training.
	Upon completion of this module the trainees will have the knowledge and
	skills to safely program and operate an ABB industrial robot.

Motoman Robot Operations & Programming	This course is designed to provide the basic skills needed to operate and program Yaskawa Motoman Robots. Course topics include
Length: 40 Hours	Robot Safety, Setup, Controls and Programming. Upon completion
Prerequisites: None	of this module the trainees will have the knowledge and skills to
	safely program and operate an industrial robot.

Robot Mechanical

Robot Mechanical Teardown	This hands-on course provides participants the ability to follow
Length: 40 Hours	detailed procedures necessary for complete disassembly, inspection,
Prerequisites: Robot	and reassembly of a FANUC robot mechanical unit. Participants will
Operations & Programming	learn rigging, preventive maintenance, how to replace parts and to
(or equivalent experience)	master the robot.

Rigging for Robot Mechanical Teardown	This course is designed to provide the skills in rigging while tearing down a robot. The course provides an understanding of rigging safety
Length: 16 Hours	and equipment used in rigging applications. Course topics include
Prerequisites: None	rigging gear, inspection, load calculations, and manipulating equipment moves. Upon completion of this module the trainees will understand basic OSHA principles, rigging safety and inspection, rigging components and terminology, and rigging fundamentals.

Machining

Machining Essentials	This course is designed to provide basic knowledge of manual
Length: 24 Hours	machining equipment including grinders and sanders, drill press,
Prerequisites: Shop	lathes, and mills. Course topics include safety, speeds and feeds, drill
Math/Blueprint Reading	press operation, grinder operation and saw operation.
(or equivalent experience)	

Machine Tool	This course is designed to provide the skills in machine tool functions
Length: 40 Hours	and applications. Students learn to operate machine tool equipment
Prerequisites: Shop Math,	including drill press, band saw, mill, and engine lathe. Course topics
Blueprint Reading	include safety, speeds and feeds, engine lathe equipment operation,
(or equivalent experience)	cutting tools, milling operation, and band saw and drill press operation.

Machinist's Handbook	This course is designed to provide an understanding of how to
Overview	effectively use the Machinery's Handbook (Pocket Companion). The
Length: 24 Hours	course provides an understanding of the handbook and how to find
Prerequisites: Shop Math,	needed information. Topics include Table of Contents, Index, Tapers,
Blueprint Reading	Threads, Material Properties, and Tooling.
(or equivalent experience)	

CNC Milling	This course is designed to provide a basic understanding of CNC
Programming & Set-up	programming and set-up of a CNC Milling Machine. Upon completion of this
Length: 40 Hours	course the trainees will have knowledge of the proper structure and
Prerequisites: Math,	execution of CNC milling programs. Trainees will be able to upload
BP Reading, GD&T	programs, load tooling, make tool and fixture offsets and run a CNC
(or equivalent	program. This program includes hands-on experience on a CNC vertical
experience)	machining center.

CNC Lathe Programming	This course is designed to provide a basic understanding of CNC
& Set-up	programming and set-up of a CNC Lathe. Upon completion of this
Length: 40 Hours	course the trainees will have knowledge of the proper structure and
Prerequisites: Math, BP	execution of CNC Lathe programs. Trainees will be able to upload
Reading, GD&T	programs, load tools, make tool offsets and run a CNC program. This
(or equivalent experience)	module will include a hands component on a CNC Lathe.

Mastercam	This course teaches participants how to use Mastercam software to
Length: 40 Hours	create 2D or 3D geometry and CNC programs, the navigation
Prerequisites: Math, BP	of the menus, importing/exporting of files, drawing
Reading, GD&T, CNC	functions, toolpath creations and posting options.
(or equivalent experience)	

SolidWorks	In this course, participants learn to use the SolidWorks mechanical design
Length: 32 Hours	automation software to build parametric models of parts and assemblies
Prerequisites:	and how to make simple drawings of those parts and assemblies. This course
Windows, Software	is not designed to provide a deep understanding of this very robust program.
Tutorials 1-3	The focus of this course is on the fundamental skills and concepts central to
	the successful use of SolidWorks 2009.

AutoCAD	This course is designed to provide an understanding AutoCAD from
Length: 40 Hours	simple fundamentals to advanced design. Course topics include basic
Prerequisites: Working	commands, using layers, inserting blocks, editing drawings and text and
knowledge of basic	dimensioning.
design/drafting procedures	
and terminology	

Quality

Statistical Process	This course will instruct the participants in process improvement and
Control [SPC]	variation reduction using Statistical Process Control (SPC). SPC identifies
Length: 16 Hours	special causes of variation and other non-normal processing conditions so
Prerequisites: Shop	the operator can bring the process under statistical control and reduce
math (or equivalent	variation. The course will address the purpose and role of SPC and the
experience)	application of variable and attribute charts, calculation of control limits,
	process capability, Cp, Cpk, Pp, Ppk, and special statistical applications in the
	everyday working environment.

Measurement System	This course is an activity-based workshop to teach fundamentals of process
Analysis [MSA]	control from a design engineering standpoint and how to apply it to product,
Length: 16 Hours	process, and measurement systems. Participants will use a series of
Prerequisites: None	activities to learn and apply tools and techniques associated with process
	control.

Kaizen Methodology	This class will examine basic elements of the Kaizen philosophy and
& Tools	methodology, discussing key elements and important prerequisites for a
Length: 24 Hours	successful implementation of Kaizen. Participants will examine key elements
Prerequisites: None	of the Kaizen philosophy and methodology, introducing a structured step-by- step process, that if understood, followed, and implemented, will yield powerful results for the organization.
8D Problem Solving	This activity-based course helps class participants learn to apply this
	problem-solving approach typically employed by quality engineers and other
Length: 16 Hours	
Prerequisites: None	professionals. The approach establishes a permanent corrective action
	based on a statistical analysis of the problem and focuses on the origin of
	the problem by determining its root causes. Participants learn how to
	identify, correct, and eliminate recurring problems.
Lean Manufacturing	This course is designed to introduce the student to Lean Manufacturing
Length: 24 Hours	including what Lean is and its history. Through lecture and activities, the
Prerequisites: None	student will learn about Lean processes, as well as Lean tools and concepts
	to establish current state and future state, and to build a Lean culture.
5S/6S Foundation for	This course showcases the power and utility of the 5s/6s strategy to improve
Excellence	workplace organization, cleanliness, and safety. This is not just
Length: 16 Hours	a methodology; it is a culture that must be built into any organization which
Prerequisites: None	aims for continuous improvement of safe working environments and
•	·

ength: 16 Hours	a methodology; it is a culture that must be built into any organization which
Prerequisites: None	aims for continuous improvement of safe working environments and
	working conditions. Participants learn to maintain and continually improve
	workplace organization, cleanliness & safety. Students will complete a
	variety of hands-on lessons to assist with 5s/6s implementation in their
	workplace.

Six Sigma Yellow Belt	This course is intended for anyone charged with improving performance.
Length: 24 Hours	Yellow Belts play a vital role in a company's efforts to improve customer
Prerequisites: None	satisfaction and overall outcomes, such as quality, reducing errors and
	improving the bottom line. Participants can expect to be fully engaged while
	learning and applying principles, tools, and techniques of a Six Sigma Yellow
	Belt.

Six Sigma Green Belt	This course is intended for individuals charged with improving process
Length: 40 Hours	performance. It is intended to teach a structured approach to improve the
Prerequisites: Six	quality of products & services, outcomes, and the bottom line by identifying
Sigma Yellow Belt	and removing the causes of defects (errors), minimizing variability, and
(or equivalent	improving workflow in business processes. Participants can expect to be fully
experience)	engaged while learning and applying principles, tools, and techniques for
	completing breakthrough improvement projects. Participants are expected
	to complete a work-related project as part of this course.

Manufacturing Production

Manuractur	
Manufacturing Proces	
Length: 16 Hours	manufacturing processes. The course provides an understanding of
Prerequisites: Shop Ma	ath types of production, materials, production processes, including casting,
(or equivalent experier	nce) molding, forming, machining, finishing and assembly. Students will gain
	knowledge of cellular and discrete manufacturing.
Welding	This course is designed to provide basic safety and technical skills to
Length: 16 Hours	individuals with little or no experience in welding. All completed weld
Prerequisites: None	assignments will be visually inspected to the appropriate American Welding
	Society (AWS) code depending on materials used. All appropriate
	destructive tests will be utilized to evaluate assignments.
Welding and	This course is designed to provide the skills in GMAW, GTAW, SMAW and
Fabrication	Oxyfuel cutting and welding. The course provides an understanding of safe
Length: 80 Hours	welding practices, welding equipment setup and operation. Upon
Prerequisites: None	completion of this module the trainees will be able to safely set-up welding
	equipment with fundamentals of metals, alloys, oxyfuel, gas metal arc, gas
	tungsten arc.
Sheet Metal Basics	This course will provide trainees with an understanding of sheet metal basics
Length: 40 Hours	including basic shop safety, sheet metal safety, sheet metal machines,
Prerequisites: None	common hand tools and personal protective equipment. Trainees learn
	basic math important in sheet metal work including basic geometry,
	measuring, and using trigonometric functions to determine angles. Trainees
	will understand blueprint reading fundamentals including symbols,
	dimensions, and tolerances.
Metallurgy	This class is designed to provide information into the aspects of steel

Metallurgy	This class is designed to provide information into the aspects of steel
Length: 16 Hours	compositions, heat treating, plating and surface treatments available on the
Prerequisites: None	market. Course topics include, but are not limited to, explanations of
	various heat treatments plus case hardening treatments as well as
	operations such as electroplating, anodizing, and black oxidizing.

Plastic Injection Mold	This course is designed to provide a thorough understanding of injection
Length: 40 Hours	molding basics and terminology. Course topics include Injection mold cycles,
Prerequisites: None	control, plastics flow, troubleshooting issues and molding strategies.

Forklift Safety & Operation	This course prepares students with the skills to operate a forklift
Length: 16 Hours	safely. Participants are taught the OSHA requirements for Powered
Prerequisites: None	Industrial Truck Regulation 1910.178, the requirements for safe operation of a powered industrial truck and are expected to demonstrate the ability to safely operate a powered industrial truck.

Mechanical

Mechanical Systems	This course provides participants with knowledge of chain drives, sprockets,
& Drives/Power	belt drives, gears, motors, clutches, and couplings with a focus on
Transmission	safety. Upon completion of this module the trainees will exercise power
Length: 40 Hours	transmission safety, perform inspection, identify components, understand
Prerequisites: None	terminology, and perform maintenance.

Equipment Leveling &	This course provides the students the skills needed to identify components
Alignment	and demonstrate the best practices used in manual laser leveling
Length: 16 Hours	and alignment. Students learn various leveling and alignment techniques
Prerequisites: None	and get hand-on practice leveling and aligning different components. This
	course is designed to provide practical training for maintenance technicians
	who have no or limited background in this area of service (Not intended for a
	journeyman millwright).

Pipefitting & Tube	This course provides participants the ability to read drawings and identify
Bending	the equipment used in pipefitting and tube bending applications. Course
Length: 40 Hours	topics include pipefitting, methods of tube bending, pipe materials, joints,
Prerequisites: None	fittings, pipe hangers and support applications. Upon completion, trainees
	will be able to read and discuss technical information, identify the correct
	pipefitting tools, and perform a piping installation.

Lubrication	This course exposes participants to the properties of different lubricants.	
Length: 16 Hours	Combining lecture and hands on exercises, participants learn to recognize	
Prerequisites: None	various types of lubrication systems, how they operate, their maintenance	
	requirements and the importance of following lubrication schedules.	

Pumps, Seals, Bearings & Lubrication	This course will provide participants with an understanding of pumps, seals, bearings, and lubrication. Through lecture and hands on exercises,
Length: 24 Hours	trainees learn how these components are used, important terminology,
Prerequisites: None	and advantages/disadvantages of different components. Participants
	apply knowledge as they practice installation, maintenance, and
	troubleshooting of the different components.

Rigging	This course provides participants with rigging skills and understanding of
Length: 16 Hours	rigging safety and knowledge of equipment used in rigging applications.
Prerequisites: None	Course topics include rigging gear, inspection, load calculations, and
	manipulating equipment moves. Upon completion of this module the
	trainees will understand basic OSHA principles, rigging safety and inspection,
	rigging components, terminology, and rigging fundamentals.

HVAC

Electrical Fundamentals	This course covers theories and applications of electricity as it applies to	
for HVAC Technicians	refrigeration devices. The class is a combination of lecture and lab where	
Length: 40 Hours	the student will construct and test various electrical circuits to verify	
Prerequisites: None	circuit operation on a HVAC breadboard. The student will apply the theory	
	learned in the lecture, with hands on labs that build on one another as the	
	student advances through the class. Target checks (quizzes) are imbedded	
	into the class to make sure the student develops a full understanding of	
	the learning objective before advancing to the next learning level. This	
	course also will help the student develop troubleshooting strategies by	
	constructing circuits from wiring diagrams and knowing what to expect; or	
	not to expect.	

Electricity & Electronics	This course covers basic electricity, basic electronics, practical circuits,
Troubleshooting for	and systems related to the needs of air conditioning and refrigeration
HVAC Technicians	technicians. This course covers electrical concepts thoroughly, including
Length: 24 Hours	the more complex circuits and problems that technicians encounter in the
Prerequisites: Electrical	field.
Fundamentals for HVAC	
Technicians	

HVAC - Servicing	In this class student learn about refrigeration devices, central air	
Refrigeration Devices	conditioning, refrigerators, freezers, water chilling devices and similar items	
Length: 24 Hours	that condition air temperature. Students learn the history of refrigeration	
Prerequisites: None	devices, refrigerants, The EPA [Environmental Protection Agency] standards,	
	symbols of electrical devices and their operation. The student will identify	
	the components of a refrigeration device & learn how to know if a particular	
	part is good or bad.	

HVAC - Servicing	This class will cover the basics of heating devices. A history of heating	
Heating Devices	devices and methods of heating a home, dwelling or room. Using a trainer	
Length: 32 Hours	board, the participant will identify and test each circuit component using a	
Prerequisites: Electrical	DVM (digital voltmeter). The class touches on older versions [60%] of	
Fundamentals	heating systems and advances through the 80%, 90% and 90% + models.	
(or equivalent experience)	Glow Plug, spark igniter, hot surface and induced draft electrical systems will be explained. Students will breadboard [Build] different types of electrical heating circuits throughout the class.	

Example Programs

Maintenance Technician

Course	Hours
Blueprint Reading	16
GD&T	16
Electrical Fundamentals	40
Motor Control & Drives	40
Robot Operations & Programming	40
Digital Electronics	40
Fluid Power	24
Electronic Sensors	40
Mechanical Systems & Drives	40
Rigging, Machine Leveling &	
Alignment	40
Intro to PLC	40
Total Hours	376

Robot Technician

Course	Hours
Electrical Fundamentals	40
Motor Controls & Drives	40
Electronic Sensors	40
Robot Operations & Programming	40
Robot Electrical & Troubleshooting	40
Advanced Robot Programming	40
Robot Mechanical Teardown &	
Rigging	40
Fanuc iRVision 2D	24
Fluid Power	24
Basic PLC	40
Total Hours	368

Controls Technician

Course	Hours
Electrical Fundamentals	40
Motor Control & Drives	40
Digital Electronics	40
Electronic Sensors	40
Robot Operations & Programming	40
Robot Electrical Troubleshooting	40
Advanced Robot Operations	40
Fluid Power	24
Welding	16
Basic PLC	40
Intermediate PLC 1	40
Intermediate PLC 2	40
PLC Troubleshooting	40
Total Hours	480

Production Assembly Operator	
Course	Hours
Manufacturing Safety	16
Teamwork	16
Blueprint Reading	16
Metrology	8
SPC	16
Fluid Power	40
Electrical Fundamentals	40
Mechnical Systems & Drives	40
Manufacturing Processes	16
Total Hours	208

Nuts and Bolts	
Course	Hours
OSHA 10	10
Shop Math	24
Blueprint Reading	16
GD&T	16
Metrology	8
Manufacturing Processes	16
Total Hours	90